

	I			
Technique	Groundwater Recharge	Rate (R) or Volume (V) Control	Water Quality	
Pervious Pavement	Type of lining?	R: Yes V: lining?	Yes(?)	
Infiltration Basin	Type of lining?	R: Yes V: lining?	Yes	
Infiltration Bed	Type of lining?	R: Yes V: lining?	Yes	
Infiltration Trench	Type of lining?	R: Yes V: lining?	Yes	
Rain Garden / Bioretention	Type of lining?	R: Yes V: lining?	Yes	
Dry Well / Seepage Pit	Type of lining?	R: Yes V: lining?	Yes	
Constructed Filter	Type of lining?	R: Yes V: lining?	Yes	
Vegetated Swale	Type of lining?	R: Yes V: lining?	Yes	
Vegetated Filter Strip	Type of lining?	R: Yes V: lining?	Yes	
Infiltration Berm	Type of lining?	R: Yes V: lining?	Yes	
Vegetated Roof	No	R: Yes? V: Yes	Yes?	

Technique	Groundwater Recharge	Rate (R) or Volume (V) Control	Water Ouality
Capture and Re-use	??	Yes	Yes
Constructed Wetlands	Yes	Yes	Yes
Wet Pond/Retention Basin	No	R: Yes V: No	Yes (?)
Dry Extended Detention Basin	No	R: Yes V: No	No
Water Quality Filters & Hydrodynamic Devices	No	R: Yes? V: No	Yes (?)
Riparian Buffer Restoration	No	Yes	Yes
Landscape Restoration / Reforestation	Yes	Yes	Yes
Soil Amendment/ Restoration	Yes	Yes	Yes (?)
Level spreader	No	R: Yes V: No	No

Site Design Techniques (PA Manual: Non-Structural Practices)

• "Non-Structural BMP deployment is not a singular, prescriptive design standard but a combination of practices that can result in a variety of environmental and financial benefits. Reliance on Non-Structural BMPs encourages the treatment, infiltration, evaporation, and transpiration of precipitation close to where it falls while helping to maintain a more natural and functional landscape."

- NS BMP 5.4.1 Protect Sensitive / Special Value
- NS BMP 5.4.2 Protect / Conserve / Enhance Riparian Buffers
- NS BMP 5.4.3 Protect / Utilize Natural Drainage Features
- NS BMP 5.5.4 Cluster Uses at Each Site
- NS BMP 5.6.1 Minimize Total Disturbed Area
- NS BMP 5.6.2 Minimize Soil Compaction
- NS BMP 5.6.3 Re-Vegetate / Re-Forest Disturbed Areas (Native Species)
- NS BMP 5.9.1 Street Sweeping / Vacuuming

Designing the Next Generation of Stormwater Practices

<section-header>Maintain Time of ConcentrationTechniques:• Open drainage• Use green space• Flatten slopes• Disperse drainage• Disperse drainage• Lengthen flow paths• Save headwater areas• Vegetative swales• Maintain natural flow paths• Increase distance from streams• Maximize sheet flow

Permeable Pavement

Technique: Permeable Pavement Design Equations

Volume Reduction Calculations

- Volume = Depth* (ft) x Area (sf) x Void Space
 - *Depth is the depth of the water stored during a storm event, depending on the drainage area and conveyance to the bed.
- Infiltration Volume = Bed Bottom Area (sf) x Infiltration design rate (in/hr) x Infiltration period* (hr) x (1/12)
 - *Infiltration Period is the time when bed is receiving runoff and capable of infiltrating at the design rate.
- No time used in the calculations can exceed 72 hours. (maximum draindown time)

Rainwater Harvesting

- Reduces runoff into drainage system.
- Can replace potable water used for landscape irrigation.

Modernizing Development Practices

What About Water Quality and TMDLs?

The manual provides estimated percent removals for each practice, but

- (1) Percent removals are not applicable in all situations
- (2) Challenge of pollutants not listed in percent removals

International Stormwater BMP Database (www.bmpdatabase.org)

• These summaries focus on two separate data analyses:

- A data set composed of each BMP study's average effluent event mean concentrations (EMCs) over the entire respective monitoring period, grouped by BMP category.
- A data set comprised of all of the individual effluent EMCs, grouped by BMP category.
- An assessment was also made of the difference between the median effluent values and the corresponding influent values for both data sets.

25

Example: Potential Treatment Options to Meet a Permit Limit of 20 mg/L TSS, 0.1 mg/L TP, and 1 mg/L TN

	TSS	TP	TN
Detention Basin (DB)	40 th percentile	30 th percentile	20 th percentile
Biofilter (GS)	65 th percentile	30 th percentile	75 th percentile
Hydrodynamic Device (HD)	40 th percentile	35 th percentile	20 th percentile
Media Filter (MF)	75 th percentile	40 th percentile	80 th percentile
Retention Pond (RP)	75 th percentile	35 th percentile	40 th percentile
Wetland Basin (WB)	80 th percentile	15 th percentile	20 th percentile

Appropriate Combinations of Controls

- No single control is adequate for all problems!
- Only infiltration reduces water flows substantially, along with soluble and particulate pollutants. Evapotranspiration devices effective for small storms.
 - Infiltration only applicable in conditions having minimal groundwater contamination potential.
- Wet detention ponds reduce particulate pollutants and may help control dry weather flows.
 - They do not consistently reduce concentrations of soluble pollutants, nor do they generally solve regional flooding problems (extended release and multiple pond releases).
- A combination of practices is usually needed, usually as a treatment train (although the practices may be separated by distance on a site).
- Order of cost (least to most) and ease: Solids control → particulate pollutant control → dissolved pollutant control.